Final - Partial Differential Equations (2022-23)

Time: 3 hours.

Attempt all questions, giving proper explanations.

1. Let $H: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be convex. We say \mathbf{q} belongs to the subdifferential of H at \mathbf{p}, written $\mathbf{q} \in \partial H(\mathbf{p})$, if

$$
H(\mathbf{r}) \geq H(\mathbf{p})+\mathbf{q} \cdot(\mathbf{r}-\mathbf{p}), \quad \text { for all } \mathbf{r} \in \mathbf{R}^{n} .
$$

Prove $\mathbf{q} \in \partial H(\mathbf{p})$ if and only if $\mathbf{p} \in \partial L(\mathbf{q})$ if and only if $\mathbf{p} \cdot \mathbf{q}=H(\mathbf{p})+L(\mathbf{q})$, where $L=H^{*}$. [6 marks]
2. Let $L: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be smooth, convex with $\lim _{|q| \rightarrow \infty} L(q) /|q|=\infty$, and $g: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be Lipschitz. For $(\mathbf{x}, t) \in \mathbf{R}^{n} \times(0, \infty)$ let

$$
u(\mathbf{x}, t)=\min _{\mathbf{y} \in \mathbf{R}^{n}}\left\{t L\left(\frac{\mathbf{x}-\mathbf{y}}{t}\right)+g(\mathbf{y})\right\} .
$$

Show that for $0<s<t$

$$
u(\mathbf{x}, t) \geq \min _{\mathbf{y} \in \mathbf{R}^{n}}\left\{(t-s) L\left(\frac{\mathbf{x}-\mathbf{y}}{t-s}\right)+u(\mathbf{y}, s)\right\} . \quad[\mathbf{6} \text { marks }]
$$

3. Fix $\mu>0$ and let ϕ be a bounded continuous function on $(0, \infty)$. Solve the following heat equation on the half line $(0, \infty)$.

$$
\begin{aligned}
v_{t}-\mu v_{x x} & =0 & & \text { in }\{0<x<\infty, 0<t<\infty\} \\
v(x, 0) & =\phi(x) & & \text { for } x>0 \\
v(0, t) & =0 & & \text { for } t>0 .
\end{aligned}
$$

4. Let $g:[0,1] \rightarrow \mathbf{R}$ be continuous and let u be a solution to

$$
\begin{aligned}
u_{t}(x, t) & =u_{x x}(x, t), & & 0<x<1, t>0, \\
u(x, 0) & =g(x) & & 0 \leq x \leq 1, \\
u_{x}(0, t) & =u_{x}(1, t)=0, & & t>0 .
\end{aligned}
$$

Let $U=\int_{0}^{1} g(x) d x$, and let $w(x, t)=u(x, t)-U$.
(a) Show that $\int_{0}^{1} w(x, t) d x=0$ for all $t>0$. [2 marks]
(b) Show that there is an $x(t)$ such that $w(x(t), t)=0$, and conclude that for any $x \in[0,1]$

$$
w(x, t)=\int_{x(t)}^{x} w_{x}(y, t) d y . \quad[\mathbf{2} \text { marks }]
$$

(c) Show that

$$
\int_{0}^{1} w^{2}(y, t) d y \leq \int_{0}^{1} w_{x}^{2}(y, t) d y . \quad[2 \text { marks }]
$$

(d) Let $E(t)=\int_{0}^{1} w^{2}(x, t) d x$. Show that

$$
E^{\prime}(t)=-2 \int_{0}^{1} w_{x}^{2}(x, t) d x . \quad[2 \text { marks }]
$$

(e) Show that $E(t) \rightarrow 0$ as $t \rightarrow \infty$. [4 marks]
5. Solve $u_{x x}-3 u_{x t}-4 u_{t t}=0, u(x, 0)=x^{2}, u_{t}(x, 0)=e^{x}$. \quad [$\mathbf{6}$ marks]
(HINT: Factor the operator)
6. Let $\phi(\mathbf{x})$ be any C^{2} function defined on \mathbf{R}^{3} that vanishes outside some ball $B(\mathbf{0}, R)$. Show that

$$
\phi(\mathbf{0})=-\int_{B(\mathbf{0}, 2 R)} \frac{\Delta \phi(\mathbf{x})}{4 \pi|\mathbf{x}|} d \mathbf{x} . \quad[8 \text { marks }]
$$

7. Argue how the Lax-Oleinik solution to the scalar conservation law

$$
\begin{aligned}
u_{t}+F(u)_{x}=0 & \text { in } \mathbf{R} \times(0, \infty), \\
u=g & \text { on } \mathbf{R} \times\{t=0\},
\end{aligned}
$$

where F is uniformly convex and $g \in L^{\infty}(\mathbf{R})$, follows from the Hopf-Lax formula for the Hamilton-Jacobi equation.
[4 marks]

